On the Bayes fusion of visual features
نویسندگان
چکیده
We consider the problem of image classification when more than one visual feature is available. In such cases, Bayes fusion offers an attractive solution by combining the results of different classifiers (one classifier per feature). This is the general form of the so-called ‘‘naive Bayes’’ approach. This paper compares the performance of Bayes fusion with respect to Bayesian classification, which is based the joint feature distribution. It is well-known that the latter has lower bias than the former, unless the features are conditionally independent, in which case the two coincide. However, as originally noted by Friedman, the low variance associated with naive Bayes estimation may mitigate the effect of its inherent bias. Indeed, in the case of small training samples, naive Bayes may outperform Bayes classification in terms of error rate. The contribution of this paper is threefold. First, we present a detailed analysis of the error rate of Bayes fusion assuming that the statistical description of the data is known. Second, we provide a qualitative justification of the small sample effect on the classifier’s performance based on the bias/variance theory. Third, we present experimental results on three image data sets using color and texture features. Our experiments highlight the relationship between the error rate of the Bayes and the Bayes fusion classifiers as a function of the training sample size. 2007 Elsevier B.V. All rights reserved.
منابع مشابه
Application of Combined Local Object Based Features and Cluster Fusion for the Behaviors Recognition and Detection of Abnormal Behaviors
In this paper, we propose a novel framework for behaviors recognition and detection of certain types of abnormal behaviors, capable of achieving high detection rates on a variety of real-life scenes. The new proposed approach here is a combination of the location based methods and the object based ones. First, a novel approach is formulated to use optical flow and binary motion video as the loc...
متن کاملA New Approach for Text Documents Classification with Invasive Weed Optimization and Naive Bayes Classifier
With the fast increase of the documents, using Text Document Classification (TDC) methods has become a crucial matter. This paper presented a hybrid model of Invasive Weed Optimization (IWO) and Naive Bayes (NB) classifier (IWO-NB) for Feature Selection (FS) in order to reduce the big size of features space in TDC. TDC includes different actions such as text processing, feature extraction, form...
متن کاملMulti-Focus Image Fusion in DCT Domain using Variance and Energy of Laplacian and Correlation Coefficient for Visual Sensor Networks
The purpose of multi-focus image fusion is gathering the essential information and the focused parts from the input multi-focus images into a single image. These multi-focus images are captured with different depths of focus of cameras. A lot of multi-focus image fusion techniques have been introduced using considering the focus measurement in the spatial domain. However, the multi-focus image ...
متن کاملHyperspectral Image Classification Based on the Fusion of the Features Generated by Sparse Representation Methods, Linear and Non-linear Transformations
The ability of recording the high resolution spectral signature of earth surface would be the most important feature of hyperspectral sensors. On the other hand, classification of hyperspectral imagery is known as one of the methods to extracting information from these remote sensing data sources. Despite the high potential of hyperspectral images in the information content point of view, there...
متن کاملAuthor gender identification from text using Bayesian Random Forest
Nowadays high usage of users from virtual environments and their connection via social networks like Facebook, Instagram, and Twitter shows the necessity of finding out shared subjects in this environment more than before. There are several applications that benefit from reliable methods for inferring age and gender of users in social media. Such applications exist across a wide area of fields,...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Image Vision Comput.
دوره 25 شماره
صفحات -
تاریخ انتشار 2007